Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26.305
1.
Sci Rep ; 14(1): 10566, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719873

Conventional wastewater treatment processes are often unable to remove antibiotics with resistant compounds and low biological degradation. The need for advanced and sustainable technologies to remove antibiotics from water sources seems essential. In this regard, the effectiveness of a spinning disc photocatalytic reactor (SDPR) equipped with a visible light-activated Fe3O4@SiO2-NH2@CuO/ZnO core-shell (FSNCZ CS) thin film photocatalyst was investigated for the decomposition of amoxicillin (AMX), a representative antibiotic. Various characterization techniques, such as TEM, FESEM, EDX, AFM, XRD, and UV-Vis-DRS, were employed to study the surface morphology, optoelectronic properties, and nanostructure of the FSNCZ CS. Key operating parameters such as irradiation time, pH, initial AMX concentration, rotational speed, and solution flow rate were fine-tuned for optimization. The results indicated that the highest AMX decomposition (98.7%) was attained under optimal conditions of 60 min of irradiation time, a rotational speed of 350 rpm, a solution flow rate of 0.9 L/min, pH of 5, and an initial AMX concentration of 20 mg/L. Moreover, during the 60 min irradiation time, more than 69.95% of chemical oxygen demand and 61.2% of total organic carbon were removed. After the photocatalytic decomposition of AMX, there is a substantial increase in the average oxidation state and carbon oxidation state in SDPR from 1.33 to 1.94 and 3.2, respectively. Active species tests confirmed that ·OH and ·O2- played a dominant role in AMX decomposition. The developed SDPR, which incorporates a reusable and robust FSNCZ CS photocatalyst, demonstrates promising potential for the decomposition of organic compounds.


Amoxicillin , Anti-Bacterial Agents , Light , Nanostructures , Catalysis , Anti-Bacterial Agents/chemistry , Nanostructures/chemistry , Amoxicillin/chemistry , Water Pollutants, Chemical/chemistry , Copper/chemistry , Zinc Oxide/chemistry , Silicon Dioxide/chemistry , Water Purification/methods
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731865

This study explored the feasibility of fluoride removal from simulated semiconductor industry wastewater and its recovery as calcium fluoride using fluidized bed crystallization. The continuous reactor showed the best performance (>90% fluoride removal and >95% crystallization efficiency) at a calcium-to-fluoride ratio of 0.6 within the first 40 days of continuous operation. The resulting particle size increased by more than double during this time, along with a 36% increase in the seed bed height, indicating the deposition of CaF2 onto the silica seed. The SEM-EDX analysis showed the size and shape of the crystals formed, along with the presence of a high amount of Ca-F ions. The purity of the CaF2 crystals was determined to be 91.1% though ICP-OES analysis. Following the continuous experiment, different process improvement strategies were explored. The addition of an excess amount of calcium resulted in the removal of an additional 6% of the fluoride; however, compared to this single-stage process, a two-stage approach was found to be a better strategy to achieve a low effluent concentration of fluoride. The fluoride removal reached 94% with this two-stage approach under the optimum conditions of 4 + 1 h HRT combinations and a [Ca2+]/[F-] ratio of 0.55 and 0.7 for the two reactors, respectively. CFD simulation showed the impact of the inlet diameter, bottom-angle shape, and width-to-height ratio of the reactor on the mixing inside the reactor and the possibility of further improvement in the reactor performance by optimizing the FBR configuration.


Calcium Fluoride , Fluorides , Wastewater , Calcium Fluoride/chemistry , Fluorides/chemistry , Fluorides/isolation & purification , Wastewater/chemistry , Water Purification/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Crystallization
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731960

Due to a large number of harmful chemicals flowing into the water source in production and life, the water quality deteriorates, and the use value of water is reduced or lost. Biochar has a strong physical adsorption effect, but it can only separate pollutants from water and cannot eliminate pollutants fundamentally. Photocatalytic degradation technology using photocatalysts uses chemical methods to degrade or mineralize organic pollutants, but it is difficult to recover and reuse. Woody biomass has the advantages of huge reserves, convenient access and a low price. Processing woody biomass into biochar and then combining it with photocatalysts has played a complementary role. In this paper, the shortcomings of a photocatalyst and biochar in water treatment are introduced, respectively, and the advantages of a woody biochar-based photocatalyst made by combining them are summarized. The preparation and assembly methods of the woody biochar-based photocatalyst starting from the preparation of biochar are listed, and the water treatment efficiency of the woody biochar-based photocatalyst using different photocatalysts is listed. Finally, the future development of the woody biochar-based photocatalyst is summarized and prospected.


Carbon , Charcoal , Water Purification , Wood , Water Purification/methods , Charcoal/chemistry , Catalysis , Wood/chemistry , Carbon/chemistry , Water Pollutants, Chemical/chemistry , Photochemical Processes , Adsorption
4.
Environ Monit Assess ; 196(5): 492, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691228

Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.


Benzhydryl Compounds , Charcoal , Phenols , Wastewater , Water Pollutants, Chemical , Water Purification , Charcoal/chemistry , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Phenols/analysis , Phenols/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Wastewater/chemistry , Waste Disposal, Fluid/methods
5.
Water Sci Technol ; 89(9): 2290-2310, 2024 May.
Article En | MEDLINE | ID: mdl-38747950

In the face of growing global freshwater scarcity, the imperative to recycle and reuse water becomes increasingly apparent across industrial, agricultural, and domestic sectors. Eliminating a range of organic pollutants in wastewater, from pesticides to industrial byproducts, presents a formidable challenge. Among the potential solutions, membrane technologies emerge as promising contenders for treating diverse organic contaminants from industrial, agricultural, and household origins. This paper explores cutting-edge membrane-based approaches, including reverse osmosis, nanofiltration, ultrafiltration, microfiltration, gas separation membranes, and pervaporation. Each technology's efficacy in removing distinct organic pollutants while producing purified water is scrutinized. This review delves into membrane fouling, discussing its influencing factors and preventative strategies. It sheds light on the merits, limitations, and prospects of these various membrane techniques, contributing to the advancement of wastewater treatment. It advocates for future research in membrane technology with a focus on fouling control and the development of energy-efficient devices. Interdisciplinary collaboration among researchers, engineers, policymakers, and industry players is vital for shaping water purification innovation. Ongoing research and collaboration position us to fulfill the promise of accessible, clean water for all.


Membranes, Artificial , Water Pollutants, Chemical , Water Purification , Water Purification/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Waste Disposal, Fluid/methods , Filtration/methods , Filtration/instrumentation , Ultrafiltration/methods , Organic Chemicals/isolation & purification
6.
Water Sci Technol ; 89(9): 2468-2482, 2024 May.
Article En | MEDLINE | ID: mdl-38747961

17α-methyltestosterone (MT) hormone is a synthetic androgenic steroid hormone utilized to induce Nile tilapia transitioning for enhanced production yield. This study specifically focuses on the removal of MT through the utilization of photocatalytic membrane reactor (PMR), which employs an in-house polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with 1% nanomaterials (either TiO2 or α-Fe2O3). The molecular weight cut-off (MWCO) of the in-house membrane falls within the ultrafiltration range. Under UV95W radiation, the PMR with PVDF/TiO2 and PVDF/α-Fe2O3 membranes achieved 100% MT removal at 140 and 160 min, respectively. The MT removal by the commercial NF03 membrane was only at 50%. In contrast, without light irradiation, the MT removal by all the membranes remained unchanged after 180 min, exhibiting lower performance. The incorporation of TiO2 and α-Fe2O3 enhanced water flux and MT removal of the membrane. Notably, the catalytic activity was limited by the distribution and concentration of the catalyst at the membrane surface. The water contact angle did not correlate with the water flux for the composited membrane. The degradation of MT aligned well with Pseudo-first-order kinetic models. Thus, the in-house ultrafiltration PMR demonstrated superior removal efficiency and lower operational costs than the commercial nanofiltration membrane, attributable to its photocatalytic activities.


Membranes, Artificial , Methyltestosterone , Ultrafiltration , Water Pollutants, Chemical , Ultrafiltration/methods , Water Pollutants, Chemical/chemistry , Methyltestosterone/chemistry , Catalysis , Water Purification/methods , Titanium/chemistry
7.
Water Sci Technol ; 89(9): 2483-2497, 2024 May.
Article En | MEDLINE | ID: mdl-38747962

In this study, a multi-functional layer was developed based on the commercially available cellulose triacetate (CTA) forward osmosis (FO) membrane to improve its antifouling property. Tannic acid/ferric ion (TA/Fe3+) complexes were firstly coated as a precursor layer on the membrane surface via self-assembly. Afterwards, the tannic acid/diethylenetriamine (TA/DETA) hydrophilic functional layer was further coated, following Ag/polyvinylpyrrolidone (PVP) anti-bacterial layer was formed in situ through the reducibility of TA to obtain TA/Fe3+-TA/DETA-Ag/PVP-modified membrane. The optimized precursor layer was acquired by adjusting the buffer solution pH to 8, TA/Fe3+ ratio to 4 and the number of self-assembled layers to 5. The permeability testing results illustrated that the functional layer had an insignificant effect on the membrane transport parameters. The TA/Fe3+-TA/DETA-Ag/PVP-modified membrane simultaneously exhibited excellent physical and chemical stability. The coated membrane also demonstrated enhanced anti-bacterial properties, achieving 98.63 and 97.30% inhibition against Staphylococcus aureus and Escherichia coli, respectively. Furthermore, the dynamic fouling experiment showed a 12% higher water flux decrease for the TA/Fe3+-TA/DETA-Ag/PVP CTA membrane compared to the nascent CTA membrane, which proved its excellent antifouling performance. This work provides a feasible strategy to heighten the antifouling property of the CTA FO membrane.


Biofouling , Membranes, Artificial , Osmosis , Staphylococcus aureus , Biofouling/prevention & control , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Tannins/chemistry , Phenols/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Water Purification/methods
8.
Water Sci Technol ; 89(9): 2538-2557, 2024 May.
Article En | MEDLINE | ID: mdl-38747966

Electroplating wastewater contains heavy metal ions and organic matter. These contaminants not only endanger the environment but also pose risks to human health. Despite the development of various treatment processes such as chemical precipitation MBR, electrocoagulation (EC) ceramic membrane (CM), coagulation ultrafiltration (UF) reverse osmosis (RO), and CM RO. These methods are only effective for low concentrations of heavy metals and struggle with high concentrations. To address the challenge of treating electroplating wastewater with high heavy metal content, this study focuses on the wastewater from Dongfang Aviation Machinery Processing Plant. It introduces an EC and integrated membrane (IM) treatment process for electroplating wastewater. The IM comprises microfiltration (MF) membrane, nanofiltration (NF) membrane, and RO membrane. Results indicated that under specific conditions, such as a pH of 8, current density of 5 A/dm2, electrode plate spacing of 2 cm, 35 min of electrolysis time, and influent pH of 10 for the IM, removal rates of Zn2+, Cu2+, Ni2+, and TCr in the wastewater exceeded 99%. The removal rates of chemical oxygen demand (COD), suspended solids (SS), total phosphorus (TP), total nitrogen (TN), and petroleum in wastewater exceed 97%. Following a continuous cleaning process, the membrane flux can consistently recover to over 94.3%.


Membranes, Artificial , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Electroplating , Water Purification/methods , Metals, Heavy , Electrocoagulation/methods
9.
Water Sci Technol ; 89(9): 2558-2576, 2024 May.
Article En | MEDLINE | ID: mdl-38747967

In this study, membranes blended with polysulfone (PSU) and polyetherimide (PEI) polymers in different ratios were fabricated. Their potential to remove pollutants from rivers, which are a potential drinking water source, was investigated. Scanning electron microscopy analysis revealed that the PSU membranes had a dense and homogeneous layer, whereas the addition of PEI formed a spongy substrate. The water content of the fabricated membranes varied between 5.37 and 22.42%, porosities 28.73-89.36%, contact angles 69.18-85.81%, and average pure water fluxes 257.25-375.32 L/m2 h. The blended membranes removed turbidity, chloride, alkalinity, conductivity, sulfate, iron, manganese, and total organic carbon up to 98.32, 92.28, 96.87, 90.67, 99.58, 94.63, 97.48, and 79.11%, respectively. These results show that when PEI was added to the PSU polymer, the filtration efficiency increased owing to an increase in the hydrophilicity of the membranes. Blending these two polymers enabled the optimization of membrane properties such as permeability, selectivity, and mechanical strength. In addition, membrane fabrication processes are simple and incur low costs.


Filtration , Membranes, Artificial , Polymers , Sulfones , Polymers/chemistry , Sulfones/chemistry , Filtration/methods , Water Purification/methods , Water Pollutants, Chemical/chemistry , Microscopy, Electron, Scanning
10.
Sci Rep ; 14(1): 11068, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744892

Colombia's continuous contamination of water resources and the low alternatives to produce biofuels have affected the fulfillment of the objectives of sustainable development, deteriorating the environment and affecting the economic productivity of this country. Due to this reality, projects on environmental and economic sustainability, phytoremediation, and the production of biofuels such as ethanol and hydrogen were combined. The objective of this article was to design and develop a sustainable system for wastewater treatment and the generation of biofuels based on the biomass of the aquatic plant Eichhornia crassipes. A system that simulates an artificial wetland with live E. crassipes plants was designed and developed, removing organic matter contaminants; subsequently, and continuing the sustainability project, bioreactors were designed, adapted, and started up to produce bioethanol and biohydrogen with the hydrolyzed biomass used in the phytoremediation process, generating around 12 g/L of bioethanol and around 81 ml H2/g. The proposed research strategy suggests combining two sustainable methods, bioremediation and biofuel production, to preserve the natural beauty of water systems and their surroundings.


Biodegradation, Environmental , Biofuels , Biomass , Eichhornia , Wastewater , Eichhornia/metabolism , Wastewater/chemistry , Water Purification/methods , Ethanol/metabolism , Bioreactors , Hydrogen/metabolism
11.
Sci Rep ; 14(1): 11058, 2024 05 14.
Article En | MEDLINE | ID: mdl-38745050

The present study assessed the effective use of biochar for the adsorption of two potent HAB toxins namely, Microcystin-LR (MCLR) and Saxitoxin (STX) through a combination of dosage, kinetic, equilibrium, initial pH, and competitive adsorption experiments. The adsorption results suggest that biochar has excellent capabilities for removing MCLR and STX, with STX reporting higher adsorption capacities (622.53-3507.46 µg/g). STX removal required a minimal dosage of 0.02 g/L, while MCLR removal needed 0.4 g/L for > 90%. Similarly, a shorter contact time was required for STX removal compared to MCLR for > 90% of toxin removed from water. Initial pH study revealed that for MCLR acidic conditions favored higher uptake while STX favored basic conditions. Kinetic studies revealed that the Elovich model to be most suitable for both toxins, while STX also showed suitable fittings for Pseudo-First Order and Pseudo-Second Order in individual toxin systems. Similarly, for the Elovich model the most suited kinetic model for both toxins in presence of each other. Isotherm studies confirmed the Langmuir-Freundlich model as the best fit for both toxins. These results suggest adsorption mechanisms including pore filling, hydrogen bonding, π-π interactions, hydrophobic interactions, electrostatic attraction, and dispersive interactions.


Charcoal , Marine Toxins , Microcystins , Saxitoxin , Water Purification , Microcystins/chemistry , Microcystins/isolation & purification , Charcoal/chemistry , Saxitoxin/chemistry , Marine Toxins/chemistry , Adsorption , Kinetics , Water Purification/methods , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
12.
Appl Microbiol Biotechnol ; 108(1): 334, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739161

Aerobic granular sludge (AGS) and conventional activated sludge (CAS) are two different biological wastewater treatment processes. AGS consists of self-immobilised microorganisms that are transformed into spherical biofilms, whereas CAS has floccular sludge of lower density. In this study, we investigated the treatment performance and microbiome dynamics of two full-scale AGS reactors and a parallel CAS system at a municipal WWTP in Sweden. Both systems produced low effluent concentrations, with some fluctuations in phosphate and nitrate mainly due to variations in organic substrate availability. The microbial diversity was slightly higher in the AGS, with different dynamics in the microbiome over time. Seasonal periodicity was observed in both sludge types, with a larger shift in the CAS microbiome compared to the AGS. Groups important for reactor function, such as ammonia-oxidising bacteria (AOB), nitrite-oxidising bacteria (NOB), polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs), followed similar trends in both systems, with higher relative abundances of PAOs and GAOs in the AGS. However, microbial composition and dynamics differed between the two systems at the genus level. For instance, among PAOs, Tetrasphaera was more prevalent in the AGS, while Dechloromonas was more common in the CAS. Among NOB, Ca. Nitrotoga had a higher relative abundance in the AGS, while Nitrospira was the main nitrifier in the CAS. Furthermore, network analysis revealed the clustering of the various genera within the guilds to modules with different temporal patterns, suggesting functional redundancy in both AGS and CAS. KEY POINTS: • Microbial community succession in parallel full-scale aerobic granular sludge (AGS) and conventional activated sludge (CAS) processes. • Higher periodicity in microbial community structure in CAS compared to in AGS. • Similar functional groups between AGS and CAS but different composition and dynamics at genus level.


Bacteria , Bioreactors , Microbiota , Sewage , Sewage/microbiology , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Bioreactors/microbiology , Aerobiosis , Sweden , Glycogen/metabolism , Ammonia/metabolism , Nitrites/metabolism , Nitrates/metabolism , Phosphates/metabolism , Water Purification/methods
13.
Water Environ Res ; 96(5): e11018, 2024 May.
Article En | MEDLINE | ID: mdl-38712584

Applicable and low-cost ultrafiltration membranes based on waste polystyrene (WPS) blend and poly vinylidene fluoride (PVDF) were effectively cast on nonwoven support using phase inversion method. Analysis was done into how the WPS ratio affected the morphology and antifouling performance of the fabricated membranes. Cross flow filtration of pure water and various types of polluted aqueous solutions as the feed was used to assess the performance of the membranes. The morphology analysis shows that the WPS/PVDF membrane layer has completely changed from a spongy structure to a finger-like structure. In addition, the modified membrane with 50% WPS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection of the membrane with a reduction in permeate flux due to the addition of PVDF. With a water permeability of 50 LMH and 44 LMH, respectively, the optimized WPS-PVDF membrane with 50% WPS could reject 81% and 74% of Congo red dye (CR) and methylene blue dye (MB), respectively. The flux recovery ratio (FRR) reached to 88.2% by increasing PVDF concentration with 50% wt. Also, this membrane has the lowest irreversible fouling (Rir) value of 11.7% and lowest reversible fouling (Rr) value of 27.9%. The percent of cleaning efficiency reach to 71%, 90%, and 85% after eight cycles of humic acid (HA), CR, and MB filtration, respectively, for the modified PS-PVDF (50%-50%). However, higher PVDF values cause the membrane's pores to become clogged, increase the irreversible fouling, and decrease the cleaning efficiency. In addition to providing promising filtration results, the modified membrane is inexpensive because it was made from waste polystyrene, and as a result, it could be scaled up to treat colored wastewater produced by textile industries. PRACTITIONER POINTS: Recycling of plastic waste as an UF membrane for water/wastewater treatment was successfully prepared and investigated. Mechanical properties showed reasonable response with adding PVDF. The modified membrane with 50% PS demonstrated that the trade-off between selectivity and permeability is met by a significant improvement in the rejection.


Coloring Agents , Fluorocarbon Polymers , Membranes, Artificial , Ultrafiltration , Water Pollutants, Chemical , Water Purification , Ultrafiltration/methods , Coloring Agents/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Plastics/chemistry , Waste Disposal, Fluid/methods , Polyvinyls/chemistry , Permeability
14.
Appl Microbiol Biotechnol ; 108(1): 321, 2024 May 06.
Article En | MEDLINE | ID: mdl-38709299

Most reduced organic matter entering activated sludge systems is particulate (1-100-µm diameter) or colloidal (0.001-1-µm diameter), yet little is known about colonization of particulate organic matter by activated sludge bacteria. In this study, colonization of biopolymers (chitin, keratin, lignocellulose, lignin, and cellulose) by activated sludge bacteria was compared with colonization of glass beads in the presence and absence of regular nutrient amendment (acetate and ammonia). Scanning electron microscopy and quantitative PCR revealed chitin and cellulose were most readily colonized followed by lignin and lignocellulose, while keratin and glass beads were relatively resistant to colonization. Bacterial community profiles on particles compared to sludge confirmed that specific bacterial phylotypes preferentially colonize different biopolymers. Nitrifying bacteria proved adept at colonizing particles, achieving higher relative abundance on particles compared to bulk sludge. Denitrifying bacteria showed similar or lower relative abundance on particles compared to sludge. KEY POINTS: • Some activated sludge bacteria colonize natural biopolymers more readily than others. • Nitrifying bacteria are overrepresented in natural biopolymer biofilm communities. • Biopolymers in wastewater likely influence activated sludge community composition.


Bacteria , Sewage , Wastewater , Biopolymers/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Sewage/microbiology , Wastewater/microbiology , Lignin/metabolism , Microscopy, Electron, Scanning , Cellulose/metabolism , Biofilms/growth & development , Chitin/metabolism , Nitrification , Water Purification/methods
15.
Water Environ Res ; 96(5): e11028, 2024 May.
Article En | MEDLINE | ID: mdl-38715392

Reverse osmosis (RO) effectively provides clean drinking water. Different RO membrane types are tailored to treat saline water feeds with varying characteristics. In the context of low brackish water feeds, the objective is to remove only a minimal excess of salinity through the membrane. Our study introduces a method of membrane post-treatments capable of achieving controlled salt rejection while concurrently enhancing permeate flux, which is vital for achieving effective and energy-efficient desalination of low brackish water. The post-treatments were conducted on our in-house-developed membranes using aqueous solutions of N,N-Dimethylformamide and glycerol for different drying times at the coupon level. The process was scaled up at the module level, allowing us to assess its potential for commercial application. At the coupon level, the permeate flux increased significantly from 3.7 ± 0.9 to 10.6 ± 0.2 L/m2·h·bar, while the salt rejection decreased from 95.6 ± 1% to 70.5 ± 1% when measured with a feed of 2,000 ppm NaCl concentration. At the module level, we observed a higher flux of 12.8 L/m2·h·bar, alongside a salt rejection of 55.5% with a similar feed. Varying post-treatment parameters at the coupon level allowed us to attain the desired salt rejection and permeate flux values. Physical changes in both pristine and post-treated membranes, including polymer swelling, were observed without chemical alterations, enhancing our understanding of the post-treatment effect and its potential for broader commercial use. PRACTITIONER POINTS: Post-treatment of RO membranes enhances flux. Physical structuring through polymer swelling was observed with the chemical structure unaltered. Post-treatment of RO opens doors for broader energy-efficient desalination application.


Membranes, Artificial , Osmosis , Saline Waters , Salinity , Water Purification , Water Purification/methods , Saline Waters/chemistry
16.
Sci Rep ; 14(1): 9972, 2024 04 30.
Article En | MEDLINE | ID: mdl-38693342

This study presents a novel biosorbent developed by immobilizing dead Sp2b bacterial biomass into calcium alginate (CASp2b) to efficiently remove arsenic (AsIII) from contaminated water. The bacterium Sp2b was isolated from arsenic-contaminated industrial soil of Punjab, a state in India. The strain was designated Acinetobacter sp. strain Sp2b as per the 16S rDNA sequencing, GenBank accession number -OP010048.The CASp2b was used for the biosorption studies after an initial screening for the biosorption capacity of Sp2b biomass with immobilized biomass in both live and dead states. The optimum biosorption conditions were examined in batch experimentations with contact time, pH, biomass, temperature, and AsIII concentration variables. The maximum biosorption capacity (qmax = 20.1 ± 0.76 mg/g of CA Sp2b) was obtained at pH9, 35 ̊ C, 20 min contact time, and 120 rpm agitation speed. The isotherm, kinetic and thermodynamic modeling of the experimental data favored Freundlich isotherm (R2 = 0.941) and pseudo-2nd-order kinetics (R2 = 0.968) with endothermic nature (ΔH° = 27.42) and high randomness (ΔS° = 58.1).The scanning electron microscopy with energy dispersive X-ray (SEM-EDX) analysis indicated the As surface binding. The reusability study revealed the reasonable usage of beads up to 5 cycles. In conclusion, CASp2b is a promising, efficient, eco-friendly biosorbent for AsIII removal from contaminated water.


Acinetobacter , Alginates , Arsenic , Biodegradation, Environmental , Biomass , Water Pollutants, Chemical , Alginates/chemistry , Alginates/metabolism , Acinetobacter/metabolism , Acinetobacter/genetics , Arsenic/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Purification/methods , Temperature , Thermodynamics
17.
Environ Geochem Health ; 46(6): 190, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695943

A magnetic nanocomposite of hydroxyapatite and biomass (HAp-CM) was synthesized through a combined ultrasonic and hydrothermal method, aiming for efficient adsorption of arsenic (As) and fluoride (F-) from drinking water in natural environments. The characterization of HAp-CM was carried out using TG, FTIR, XRD, SEM, SEM-EDS, and TEM techniques, along with the determination of pHpzc charge. FTIR analysis suggested that coordinating links are the main interactions that allow the formation of the nanocomposite. XRD data indicated that the crystalline structure of the constituent materials remained unaffected during the formation of HAp-CM. SEM-EDS analysis revelated a Ca/P molar ratio of 1.78. Adsorption assays conducted in batches demonstrated that As and F- followed a PSO kinetic model. Furthermore, As adsorption fitting well to the Langmuir model, while F- adsorption could be explained by both Langmuir and Freundlich models. The maximum adsorption capacity of HAp-CM was found to be 5.0 mg g-1 for As and 10.2 mg g-1 for F-. The influence of sorbent dosage, pH, and the presence of coexisting species on adsorption capacity was explored. The pH significantly affected the nanocomposite's efficiency in removing both pollutants. The presence of various coexisting species had different effects on F- removal efficiency, while As adsorption efficiency was generally enhanced, except in the case of PO43-. The competitive adsorption between F- and As on HAp-CM was also examined. The achieved results demonstrate that HAp-CM has great potential for use in a natural environment, particularly in groundwater remediation as a preliminary treatment for water consumption.


Arsenic , Durapatite , Fluorides , Nanocomposites , Water Pollutants, Chemical , Water Purification , Fluorides/chemistry , Adsorption , Nanocomposites/chemistry , Durapatite/chemistry , Water Pollutants, Chemical/chemistry , Arsenic/chemistry , Water Purification/methods , Hydrogen-Ion Concentration , Biomass , Kinetics , Drinking Water/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
18.
Environ Geochem Health ; 46(6): 182, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695980

Due to the development of industries such as mining, smelting, industrial electroplating, tanning, and mechanical manufacturing, heavy metals were discharged into water bodies seriously affecting water quality. Bamboo charcoal, as an environmentally friendly new adsorbent material, in this paper, the virgin bamboo charcoal (denoted as WBC) was modified with different concentrations of KMnO4 and NaOH to obtain KMnO4-modified bamboo charcoal (KBC) and NaOH-modified bamboo charcoal (NBC) which was used to disposed of water bodies containing Cu2+ and Zn2+. The main conclusions were as following: The adsorption of Cu2+ by WBC, KBC and NBC was significantly affected by pH value, and the optimum pH was 5.0. Differently, the acidity and alkalinity of the solution doesn't effect the adsorption of Zn2+ seriousely. Meanwhile, surface diffusion and pore diffusion jointly determine the adsorption rate of Cu2+ and Zn2+. The test result of EDS showed that Mn-O groups formed on the surface of K6 (WBC treated by 0.06 mol/L KMnO4) can promote the adsorption of Cu2+ and Zn2+ at a great degree. The O content on N6(WBC treated by 6 mol/L NaOH) surface increased by 30.95% compared with WBC. It is speculated that the increase of carbonyl group on the surface of NBC is one of the reasons for the improvement of Cu2+ and Zn2+ adsorption capacity. Finally, the residual concentrations of Cu2+ and Zn2+ in wastewater are much lower than 0.5 mg/L and 1.0 mg/L, respectively. Thus it can be seen, KBC and NBC could be a promising adsorbent for heavy metals.


Charcoal , Copper , Water Pollutants, Chemical , Zinc , Adsorption , Zinc/chemistry , Copper/chemistry , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Potassium Permanganate/chemistry , Water Purification/methods , Sasa/chemistry , Sodium Hydroxide/chemistry
19.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731445

Reducing high concentrations of pollutants such as heavy metals, pesticides, drugs, and dyes from water is an emerging necessity. We evaluated the use of Luffa cylindrica (Lc) as a natural non-conventional adsorbent to remove azo dye mixture (ADM) from water. The capacity of Lc at three different doses (2.5, 5.0, and 10.0 g/L) was evaluated using three concentrations of azo dyes (0.125, 0.250, and 0.500 g/L). The removal percent (R%), maximum adsorption capacity (Qm), isotherm and kinetics adsorption models, and pH influence were evaluated, and Fourier-transform infrared spectroscopy and scanning electron microscopy were performed. The maximum R% was 70.8% for 10.0 g L-1Lc and 0.125 g L-1 ADM. The Qm of Lc was 161.29 mg g-1. Adsorption by Lc obeys a Langmuir isotherm and occurs through the pseudo-second-order kinetic model. Statistical analysis showed that the adsorbent dose, the azo dye concentration, and contact time significantly influenced R% and the adsorption capacity. These findings indicate that Lc could be used as a natural non-conventional adsorbent to reduce ADM in water, and it has a potential application in the pretreatment of wastewaters.


Azo Compounds , Coloring Agents , Luffa , Water Pollutants, Chemical , Water Purification , Luffa/chemistry , Azo Compounds/chemistry , Azo Compounds/isolation & purification , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Kinetics , Coloring Agents/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared , Water/chemistry
20.
Molecules ; 29(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38731553

One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.


Charcoal , Drugs, Chinese Herbal , Norfloxacin , Water Pollutants, Chemical , Norfloxacin/chemistry , Charcoal/chemistry , Adsorption , Drugs, Chinese Herbal/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Kinetics , Thermodynamics , Water Purification/methods , Hydrogen-Ion Concentration
...